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Two-dimensional Lagrangian acceleration statistics of inertial particles in a turbulent
boundary layer with free-stream turbulence are determined by means of a particle
tracking technique using a high-speed camera moving along the side of the wind
tunnel at the mean flow speed. The boundary layer is formed above a flat plate
placed horizontally in the tunnel, and water droplets are fed into the flow using
two different methods: sprays placed downstream from an active grid, and tubes fed
into the boundary layer from humidifiers. For the flow conditions studied, the sprays
produce Stokes numbers varying from 0.47 to 1.2, and the humidifiers produce Stokes
numbers varying from 0.035 to 0.25, where the low and high values refer to the outer
boundary layer edge and the near-wall region, respectively. The Froude number is
approximately 1.0 for the sprays and 0.25 for the humidifiers, with a small variation
within the boundary layer. The free-stream turbulence is varied by operating the grid
in the active mode as well as a passive mode (the latter behaves as a conventional
grid). The boundary layer momentum-thickness Reynolds numbers are 840 and 725
for the active and passive grid respectively. At the outer edge of the boundary layer,
where the shear is weak, the acceleration probability density functions are similar to
those previously observed in isotropic turbulence for inertial particles. As the boundary
layer plate is approached, the tails of the probability density functions narrow, become
negatively skewed, and their peak occurs at negative accelerations (decelerations in
the streamwise direction). The mean deceleration and its root mean square (r.m.s.)
increase to large values close to the plate. These effects are more pronounced at
higher Stokes number. In the vertical direction, there is a slight downward mean
deceleration and its r.m.s., which is lower in magnitude than that of the streamwise
component, peaks in the buffer region. Although there are free-stream turbulence
effects, and the complex boundary layer structure plays an important role, a simple
model suggests that the acceleration behaviour is dominated by shear, gravity and
inertia. The results are contrasted with inertial particles in isotropic turbulence and
with fluid particle acceleration statistics in a boundary layer. The background velocity
field is documented by means of hot-wire anemometry and laser Doppler velocimetry
measurements. These appear to be the first Lagrangian acceleration measurements of
inertial particles in a shear flow.

1. Introduction
The objective of this paper is to study the Lagrangian acceleration statistics of

small (sub-Kolmogorov scale) particles with densities much greater than that of the
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surrounding fluid (inertial particles) in a turbulent boundary layer. While significant
attention has been given to the study of Lagrangian acceleration statistics in flows
without shear (Toschi & Bodenschatz 2009), flows with more complex forcing have
received comparatively little attention.

Understanding the Lagrangian behaviour of inertial particles in inhomogeneous
flows has important practical and conceptual implications. The formation of raindrops
in clouds occurs in a highly inhomogeneous turbulent medium. The inertial effects
cause clustering of small droplets and this may enhance the droplet growth rate (Shaw
2003; Lehmann et al. 2007; Ghosh et al. 2005). The clustering is affected by both the
magnitude and relative time scale (to that of the turbulence) of the inertial particle
accelerations, and thus in order to understand clustering mechanisms, it is necessary
to study inertial particle acceleration statistics (Toschi & Bodenschatz 2009; Bec
et al. 2006; Ayyalasomayajula, Collins & Warhaft 2008). In the oceans zooplankton
predators perceive their prey from a Lagrangian perspective and the way in which the
phytoplankton move and distribute themselves is in part determined by the turbulence
(Seuront & Schmitt 2004). In engines the combustion of the fuel droplets is affected
by particle inertia (Post & Abraham 2002) as are particle deposition, entrainment
and re-suspension rates in a turbulent boundary layer (Marchioli & Soldati 2002). All
of these flows are inhomogeneous at the large scale and shear is often an important
driving mechanism. In many situations the particle size is small. For example in clouds
coalescing droplets are order of 10 μm while the Kolmogorov scale is of order 1 mm.
From a fundamental viewpoint it is known that large-scale inhomogeneity affects
the turbulence structure down to the very smallest (Kolmogorov) scales (Shen &
Warhaft 2000; Ouellette et al. 2006b) and thus it is important to study Lagrangian
acceleration and related statistics in these more complex flows under controlled
laboratory conditions.

Recently there have been significant advances in the measurement, computation
and theory of fluid particle trajectories (small particles of the same density as
the surrounding fluid) in turbulence. These have been largely due to experimental
developments in high-speed tracking devices such as optical imaging (Bourgoin et al.
2006; Salazar et al. 2008), silicon strip detectors (Voth et al. 2002) and acoustic
techniques (Mordant et al. 2001) in conjunction with the development of turbulence
generating devices that can obtain the high Reynolds numbers needed for the
exploration of theoretical postulates (Makita 1991; Mydlarski & Warhaft 1996;
Mordant et al. 2001; Voth et al. 2002).

These Lagrangian measurements have provided insight into particle accelerations
and their statistics, including the acceleration probability density function (p.d.f.)
(Voth et al. 2002), Lagrangian structure functions (Xu et al. 2006) and particle pair
dispersion (Bourgoin et al. 2006) in flows that are close to isotropic. By tracking
particles, the full acceleration, its temporal plus spatial variation, can be determined.
The more traditional Eulerian measurements, while providing important information
on the velocity field Ui(t), cannot easily yield the full acceleration ai(t) = ∂Ui/∂t +
Uj∂Ui/∂xj . There have been some indirect attempts to determine acceleration using
the Eulerian approach. Using fourth-order structure functions Hill & Wilczak (1995),
Gylfason, Ayyalasomayajula & Warhaft (2004) and Gulitski et al. (2007) have deduced
the acceleration variance in isotropic turbulence from hot-wire anemometry (HWA)
measurements. Lehmann, Nobach & Tropea (2002) and Kinzel et al. (2006) have used
laser Doppler velocimetry (LDV) techniques to measure acceleration by estimating
the change in signal frequency in time and Lowe & Simpson (2006) using an advanced
LDV technique, have deduced the correlation between the velocity and acceleration,
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an important quantity in the Reynolds transport equations. Recently an extended
laser Doppler technique has been used to study weakly inertial particles and bubble
accelerations in Kármán flow (Volk et al. 2008). Other measurements of Lagrangian
and Eulerian accelerations have been performed using particle image velocimetry
(PIV) (Jakobsen, Dewhirst & Greated 1997; Jensen et al. 2001; Christensen & Adrian
2002; Dong et al. 2001; Liu & Katz 2006); however these techniques are limited to
small spatial volumes and residence times. Finally, Tsuji et al. (2007) have measured
the pressure fluctuations and from the gradient of this quantity the acceleration may be
calculated if viscous effects are unimportant. Despite these advances, directly following
a fluid particle has many advantages over PIV and LDV measurements if information
on acceleration and related statistics is required over significant spatial volumes and
times. The Lagrangian approach also allows the study of multi-particle statistics,
which is vital for our understanding of dispersion and the statistical geometry of
turbulent flows (Xu, Ouellette & Bodenschatz 2008), and for the study of inertial
particles, the subject addressed here.

Inertial particles react in a more complex way than do fluid particles to
variations in the surrounding fluid motion. Recent direct numerical simulations
(DNS) (Bec et al. 2006), measurements (Ayyalasomayajula et al. 2006) and modelling
(Ayyalasomayajula et al. 2008) of inertial particles significantly smaller than the
Kolmogorov scale in isotropic turbulence, show that the inertial effects reduce the
particle acceleration variance and attenuate the tails of the acceleration p.d.f. (By
contrast, for inertial particles with sizes greater than the Kolmogorov scale, athough
the variance is reduced, the tails of the p.d.f. are less affected (Xu & Bodenschatz
2008; Volk et al. 2008.) A similar observation has been made for neutrally buoyant
large particles (Qureshi et al. 2007).) For the sub-Kolmogorov inertial particles the
observation of reduced variance and attenuated p.d.f. tails is consistent with the
particles preferentially concentrating away from regions of intense vortex motion
into regions of high strain due to the centrifugal forces acting on them (Maxey &
Riley 1983; Maxey 1987; Squires & Eaton 1991; Sundaram & Collins 1997). For
recent experimental evidence of clustering see Wood, Hwang & Eaton (2005); Saw
et al. (2008); Salazar et al. (2008). While the observations are clear, the physics
has been interpreted in various ways. These include the clustering of acceleration
stagnation points (Chen, Goto & Vassilicos 2006), a sweep–stick mechanism (Goto &
Vassilicos 2008), instability in the particle spatial distribution (Elperin et al. 2002)
and filtering of low-inertia particles (Ayyalasomayajula et al. 2008). Thus although
the clustering of sub-Kolmogorov inertial particles is well established there is
still considerable discussion on the precise mechanisms. Understanding the particle
acceleration statistics is an important step in this direction.

So far there has been no attempt to look at inertial particles in shear using high-
speed Lagrangian tracking techniques, although there has been a significant body of
work on other aspects of particles in shear such as particle deposition, trapping and
segregation in boundary layers (e.g. Freidlander & Johnstone 1957; Brooke et al. 1992;
Kaftori, Hetsroni & Banerjee 1995a, b; Marchioli & Soldati 2002; Kulick, Fessler &
Eaton 1994). Here we address the following question: How does the presence of shear
affect the Lagrangian acceleration statistics of inertial particle motion? Our objective
is to compare the results obtained in shear flow with those observed in isotropic
turbulence. As noted, there is significant practical as well as fundamental interest in
this problem.

In order to address this question we track the motion of water droplets in a wind
tunnel in which a flat plate is placed to provide a turbulent boundary layer and thus
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a high degree of shear close to the wall. As in Ayyalasomayoula et al. (2006), we
inject the particles into the flow from sprays downstream from an active grid. We
also use an additional injection technique for particles with low inertia, by injecting
the particles directly into the boundary layer downstream of the leading edge, and
we show that there is consistency with the results of the spray system. Both methods
provide a homogeneous distribution of water droplets in the boundary layer. In these
experiments there are high levels of free-stream turbulence above the boundary layer.
These are significant flows in their own right but perhaps not as generic as the
boundary layer in a laminar free-stream flow. Thus we carefully document the flow
by means of HWA and LDV measurements. We will be reporting the details of these
interesting flows in another publication. Here we show that as we alter the free-stream
turbulence level we do not find a qualitative change in the particle characteristics
near the plate. Thus although our flow is not simple, we see it as a first step in the
study of the effects of shear on particles with inertia.

The effects of inertia are described by the Stokes number, St = τs/τη, the ratio of the
particle inertial response time (stopping time) τs = (1/18)(ρd/ρf )d2/ν to the time scale
of the smallest eddies (Kolmogorov time) τη = (ν/ε)1/2, where ρd , ρf , d , ν and ε are
the particle density (1000 kgm−3), fluid density (1.2 kg m−3), particle diameter, fluid
kinematic viscosity (1.5 × 10−5 m2 s−1) and turbulence dissipation rate respectively.
Thus St ∼ d2ε1/2 for a fixed density ratio and fluid viscosity, and for particles with
low Reynolds number (as is the case for the present work). Inertial effects are most
pronounced for St of order one (Wood et al. 2005; Aliseda et al. 2002) but they may
be important even for values as low as 0.01 (Chun et al. 2005). By minimizing the
particle size, the inertia can be reduced to small values, so that the droplets behave
as fluid particles.

Gravity also affects the motion of inertial particles (Aliseda et al. 2002). The
measure of its effect in turbulence is the ratio of the Stokes terminal velocity ug = τsg

to the Komogorov velocity uη = η/τη, where g and η are the acceleration due to gravity
and Kolmogorov length scale (ν3/ε)1/4 respectively. The sole governing parameter for
the turbulence itself is the Reynolds number. Here we use the Taylor-scale Reynolds
number, Reλ = 〈u2〉1/2λ/ν, to describe the free-stream conditions and the momentum-
thickness Reynolds number, Reθ = U0θ/ν, for the boundary layer. Here 〈u2〉1/2 is
the longitudinal fluctuating velocity r.m.s., λ is the Taylor microscale ([U 2〈u2〉/
〈(∂u/∂t)2〉]1/2), U0 is the free-stream velocity and θ is the momentum thickness.

The outline of the paper is as follows. First we describe the experimental set-
up and diagnostics. In § 3 we characterize the flow, its mean and variance velocity
characteristics by means of HWA measurements. We compare and contrast these
results to the zero free-stream turbulence boundary layer measurements of DeGraaff &
Eaton (2000). In § 4 we present the results of our acceleration measurements in the
lower part of the boundary layer where shear is dominant. We describe the mean and
variance acceleration profiles and the acceleration p.d.f. distributions as a function of
height above the plate and contrast these to the case of isotropic turbulence. Finally
in § 5 we provide a simple model based on the equation of motion for an inertial
particle to explain our results.

2. Apparatus
The experiments were conducted in a 1 m × 0.9 m × 20 m open-circuit wind tunnel

with an active grid consisting of randomly flipping triangular agitator wings attached
to rotating grid bars (Mydlarski & Warhaft 1996) placed at the entrance to the tunnel
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(a)

(b)

Figure 1. The apparatus used to produce the large particles (〈d2〉1/2
0 = 41 μm, St0 = 0.47) with

sprays placed 5 cm downstream of the active grid. (a) The spray system downstream from the
active grid; (b) close up of the particles generated from the spray nozzles.

test section (figure 1). The grid creates large-scale, high-intensity turbulence. In order
to produce a boundary layer at the height level of the camera diagnostics, a flat glass
plate of size 3.3 m × 0.67 m × 0.012 m was placed 0.4 m above the floor of the tunnel,
0.9 m from the grid. The measurements of the particles were taken 2.7 m from the
leading edge of the plate (i.e. 3.6 m from the grid) and 0.5 m from the tunnel sidewall.
Due to the fixed tunnel cross-section area there was a small favourable pressure
gradient in the x-direction.

Two methods of producing water droplets were used. To produce high Stokes
number droplets, an array of four nozzles (Ayyalasomayajula et al. 2006; Gylfason
2006) was symmetrically placed 5 cm downstream from the grid (figure 1) although
only the two lower sprays were used for the present experiment with the boundary
layer plate in place. The spray system consists of small (1 mm diameter) nozzles
fed on one side by water and the other by compressed air to cause spray breakup
and mixing (Spraying System Co. Illinois. Series 1/4 J). The velocity of the air and
water at the nozzle exit was 8 m s−1 and 13 m s−1 respectively. The droplets produced
by this method had a maximum free-stream Stokes number St0 = 0.47, where the
subscript zero refers to the stream conditions. The sprays had an effect on the
velocity field due to the excess momentum introduced at the nozzles by the air–water
jet combination but we were unable to observe any abnormal behaviour of the flow
at the measurement station, which is about 100 Kolmogorov time scales (and 200
stopping times, τs) from the jet. This is ample time for mixing by the active grid.
Figure 2 shows the longitudinal velocity spectrum measured with and without the
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Figure 2. The longitudinal velocity spectrum measured with the air jets from the sprays
on (solid line) and off (dashed line) at the location of the particle tracking measurements.
Reλ0 = 240 (see table 2 below for flow parameters).

air sprays operating. There is no effect on the quality of the spectrum, indicating
that the air jet had evened out at the measuring station, but the mean increased
slightly (by around 3–4 %). When the air/water sprays were operating together, at
the measurement station the LDV measured an increase of nearly 10 % in the mean
over the case for the spray system not operating. This we attribute to the further
added momentum from the water sprays as well as to some bias in the LDV which
selectively samples the faster particles in high-intensity turbulence (Fuchs, Nobach &
Tropea 1994). We note that experiments with smaller (fluid) particles using a similar
spray system (Ayylasomayajula et al. 2008, figure 1) were able to reproduce the
particle acceleration p.d.f.s consistent with those of Voth et al. (2002) and Bec et al.
(2006), providing further indication that the initial conditions were not influencing
the acceleration results at the measurement location. For further discussion on the
effect of the sprays on clustering see Saw et al. (2008).

In order to feed low Stokes number droplets into the boundary layer we used
ultrasonic commercial humidifiers (Sunbeam Products Inc.). Tubes (diameter 3 cm)
connected to these humidifiers were fed to the middle of the plate, 7.5 cm above the
plate and 1.6 m from the measurement location (figure 3). The droplets produced by
this method had low Stokes numbers (St0 = 0.07 and St0 = 0.035 for two different
Reynolds numbers studied). It will be shown that the Stokes number varies in the
boundary because of its dependence on the turbulence dissipation rate. The tubes had
some effect on the boundary layer characteristics (§ 3). In all experiments the particle
mass loading was low (approximately 10−4 kg water per kg of dry air).

A high-speed camera (Phantom v7.1) attached to a precision, linearly translating,
pneumatically driven sled (Gylfason 2006) was accelerated to the mean flow speed
and moved at a constant speed, with less than 0.5 % variation over the measurement
length (measured by means of an optical encoder, Gylfason 2006). The camera frame
rate was 8000 frames per second with a resolution of 512 pixels × 512 pixels. A fibre
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Figure 3. Schematic of the forward scatter experiment (top view). The two separate methods
of introducing the droplets are shown together. When the sprays are operating, the humidifiers
and feeding tubes are removed from the tunnel. The y coordinate is measured vertically from
the plate.

optic cable was attached to the moving camera and a laser beam (Nd-YAG laser,
20 W, pulse width 120 ns at a repetition rate of 40 KHz) was reflected from a mirror
at the far side of the tunnel so that forward scatter was effected at an angle of about
5◦ (figure 3). The aperture of the camera objective was completely open to achieve a
small depth of focus (≈2 mm). Only the particles in focus were analysed. Out of focus
particles were discarded based on intensity thresholding. The background obtained
by averaging many images was subtracted from all images before analysis. The laser
beam forward scatter arrangement provided a stronger scattered signal from the
particles than the laser sheet arrangement used in Ayyalasomayajula et al. (2006).
This was the reason why it was chosen in the current experiments. In § 4 we compare
the results using the two different methods.

The camera tracked the particles over a distance of 50 cm. The sampling area
was 3.3 cm × 3.3 cm. The inter-sample time was 0.0125 and 0.0042 Kolmogorov time
units for the high and low Reynolds number cases respectively (Reλ0 = 240 and
100, see table 2 below) and the corresponding spatial resolution was 0.148 and
0.097 Komogorov lengths. The total number of sled runs varied from 1500 to 3000
resulting in 5 × 105 to 106 tracks or approximately 40 × 106 to 90 × 106 acceleration
estimates. A given track length was order 2 to 5τη0 and assuming that the accelerations
are correlated over a full Kolmogorov time scale, we estimate the total number of
independent accelerations to be of order 5 × 105 to 2 × 106. The field of view was
divided into strips (see the following paragraph) resulting in independent samples
ranging from 3 × 104 for the smallest strips to 4 × 105 for the largest strips for the
case St0 = 0.47, Reλ0 = 240 and slightly smaller for the lower St and Re cases. The
p.d.f. results described below suggest that this is a rather conservative estimate since
they are well resolved to approximately 10−5. The data were analysed following the
particle tracking algorithm developed by the Bodenschatz group (Voth et al. 2002;
Ouellette, Xu & Bodenschatz 2006a). Although over a particular run the camera
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y+ 6 7.5 18 37 62 87 129 186 244

	y+ 0–12 0–15 12–25 25–50 50–75 75–100 100–158 158–215 215–273

Table 1. Strip widths at different distances from the plate.

0 0.01 0.02 0.03 0.04

102

101

100

τf  (s)

arms

Figure 4. The dependence of arms on fit time τf at y+ = 244. �, Reλ0 = 240, St0 = 0.47;
�, Reλ0 = 240, St0 = 0.07; �, Reλ0 = 100, St0 = 0.035.

speed was steady, from run to run there was a small variation in its mean motion.
Thus we did not extract longitudinal velocity statistics from the particle tracks. The
relative camera motion does not affect acceleration because it is a second derivative.
Velocity statistics from static probes are reported in § 3.

The accelerations were calculated by convolution of the measured particle
tracks with a Gaussian smoothing and differentiating filter (Mordant, Crawford &
Bodenschatz 2004). Then the area of the 3.3 cm × 3.3 cm boundary layer image was
divided into strips of varying thickness and the accelerations were binned according
to their locations in order to study their statistics at various levels in the boundary
layer. The widths of the strips in y+ units are shown in table 1. Their widths were
varied to see if the acceleration variance and other statistics were affected, but we will
show that, if the variation of strip width was reasonable (in the sense that it did not
average too large a part of the boundary layer), the statistics were not affected.

In the measurements of Voth et al. (2002), the best fit interval, τf (the time of
a particle trajectory over which the acceleration is determined) to use to obtain the
acceleration, was of order the Kolmogorov time (Voth et al. 2002, p. 143). For larger τf

the fit does not correspond to the real trajectory and underestimates the acceleration,
and for smaller τf the fit mostly corresponds to the position measurement errors
and overestimates the acceleration. Voth et al. (2002) showed that the acceleration
r.m.s. is best obtained by extrapolation of the fit interval to zero provided the particle
trajectories are long enough (about 10τη or more). Figure 4 shows the dependence
of the acceleration r.m.s. on the fit interval, τf , for the widest strip (	y+ =215–273)
for different Re and St. The arms dependence corresponds well with the Voth et al.
(2002, figure 23) measurements. However, in order to determine the acceleration r.m.s.
at smaller heights in the boundary layer, because of smaller strip width we were
unable to employ the Voth et al. (2002) method of extrapolating the τf to zero.
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U0 ε0 η0 τη0 u∗ δ δν

Reλ0 (m s−1) (〈u2〉1/2/〈U〉)0 (m2 s−3) (mm) (s) (m s−1) (cm) (mm) Reθ Re∗

100 2.37 4.7% 0.0176 0.66 0.03 0.117 6.09 0.128 725 470
240 2.39 11.6% 0.098 0.43 0.01 0.124 9.97 0.12 840 830

Table 2. Free-stream and boundary layer parameters (zero subscripts refer to the free stream).
u∗ is the friction velocity; δ is the thickness of the boundary layer based on 99.5 % of the
free-stream velocity; δν = ν/u∗ is the viscous length scale; Re∗ = u∗δ/ν is wall stress Reynolds
number; ε = 15(ν/U 2)〈(∂u/∂t)2〉 is the turbulence energy dissipation rate.

Instead, we chose the value of τf just before the interval where the noise became
significant. This occurs at τf ≈ 0.01 s (figure 4). We used this value in our calculations
of the accelerations and their statistics presented in § 4. It corresponds to τf ≈ τη0 for
Reλ0 = 240 and τf ≈ 0.3τη0 for Reλ0 = 100. From our estimates and from the analysis
done by Voth et al. (2002) it follows that the acceleration r.m.s. calculated for the
finite time is smaller by approximately 5–15 % (depending on St) than the real r.m.s.
when τf goes to zero. There is also a resolution error in the determination of the
particle position. In the particle tracking algorithm employed here the position of a
particle is determined from the peak in the Gaussian fit of a particle intensity profile.
This, in general, can give a sub-pixel resolution of the particle position. But in practice
the intensity profile is not always Gaussian, and this particularly affects the resolution
of the larger particles, limiting them to a resolution of about 1 pixel. This gives an
uncertainty in the tracks, and results in an uncertainty in the acceleration for our
smaller particles, 〈d2〉1/2 = 16 μm, to be about 1 m s−2. For the 〈d2〉1/2 = 41 μm particles
this uncertainty is larger, about 2.4 m s−2. (See § 4 for the particle distributions.) Both
the larger particle size and the over-saturated particle intensity profile reduce the
accuracy of the Gaussian fit. We estimated that the resolution error is larger than the
error introduced by determining the acceleration over a finite time. The error bars
will be shown in § 4.

The longitudinal and vertical velocity components were measured with an X-array
HWA (TSE 1241) with 3.05 μm tungsten wires. Supplementary measurements of the
streamwise and vertical velocity were made with an LDV system (TSI Incorporated).

3. Flow characterization: the velocity field
The flow is a flat-plate boundary layer with free-steam turbulence. The particle

injection mechanisms have been described in § 2. Here we characterize the flow using
both HWA and LDV.

We define the flows in terms of their free-stream turbulence Taylor-scale Reynolds
numbers, Reλ0. There are two cases. In the first case with the active grid operating,
for the free-stream turbulence Reλ0 = 240. In the second case with the active grid
turned off, such that the grid structure acted like a passive grid (with the winglets
placed in the same direction as the flow and thus providing no extra flow impedance),
Reλ0 = 100. The boundary layer Reynolds numbers based on the wall stress and
momentum thickness at the measurement location, as well as other relevant flow
parameters are listed in table 2. The particles injected from the humidifiers (St0 = 0.07
and 0.035 for Reλ0 = 240 and 100 respectively) had negligible effect on the velocity
statistics although the tubes from which the particles were fed disturbed the velocity
field. This is discussed below. The spray system (St0 = 0.47, Reλ0 = 240) did affect the
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Figure 5. Mean velocity profiles in the streamwise direction, normalized by the friction
velocity: �, Reλ0 = 100, Reθ = 660 (measured with HWA, without humidifier tubes in place);
�, Reλ0 = 100, Reθ = 725 (HWA, with humidifier tubes in place); �, Reλ0 = 240, Reθ =840
(HWA, without humidifier tubes in place); �, Reλ0 = 240, Reθ =840 (LDV, with humidifier
tubes in place); � Reλ0 = 0, Reθ = 1430 (DeGraaff & Eaton 2000).

velocity field (see § 2). The velocity field profiles (figures 5, 6 and 7) are for the sprays
turned off.

Figure 5 shows the mean velocity profiles normalized by wall units: U+ ≡ U/u∗,
y+ ≡ yu∗/ν. We are primarily concerned with the region of significant mean shear
in the turbulence regime, i.e. from approximately y+ =10 to y+ = 250. For reference
we have compared with the zero free-stream turbulence boundary layer data of
DeGraaff & Eaton (2000). Because of the free-stream turbulence, the outer velocity
defect region is diminished (Reλ0 = 100) or disappears entirely (Reλ0 = 240). This is
consistent with data of Hancock & Bradshaw (1989) and Thole & Bogard (1996).
Our data for the logarithmic region are consistent with DeGraaff & Eaton (2000).
We believe the small departure at y+ ≈ 20 is due to the interference of the plate with
the HWA probe. The LDV resolves the flow better close to the wall and is consistent
with the DeGraaff & Eaton (2000) measurements. Notice that we have included the
mean flow profiles for the flow with and without the humidifiers tubes in place. There
is no apparent effect on the mean profiles. We will show that the tubes do have some
effect on the fluctuations.

The variance profiles of the u (streamwise) and v (vertical) components and the
uv covariance profiles are shown in figure 6. The Reλ0 = 100 case follows the zero
free-stream-turbulence data well for the u (longitudinal) variance (figure 6a). For the
v (vertical) variance there is a departure, but the magnitudes of the Reλ0 = 100 case
and the zero free-stream-turbulence case are similar, particularly close to the wall.
Of course far from the plate the present measurements approach their free-stream
turbulence levels while the De Graaff & Eaton measurements approach zero. The
Reλ0 = 240 case departs significantly from the zero free-stream turbulence data above
y+ ≈ 20 for the u component and above y+ ≈ 100 for the v component. The covariance
profiles for both Reλ0 = 100 and Reλ0 = 240 (figure 6b) are qualitatively similar to the
zero free-stream turbulence case although the magnitudes are lower and there is
significant scatter in Reλ0 = 100 case.

The tubes introducing the low Stokes number particles into the flow had no
measurable effect on the high Reynolds number (Reλ0 = 240) free-stream turbulence
flow. For the low Reynolds number flow (Reλ0 = 100), there was a measurable effect,
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Figure 6. (a) urms/u
∗ (filled symbols) and vrms/u

∗ (open symbols), (b) Reynolds stresses
normalized by the friction velocity. For both graphs: triangles, Reλ0 = 100, Reθ = 660 (HWA,
without humidifier tubes in place); squares, Reλ0 = 240, Reθ = 840 (HWA, without humidifier
tubes in place); circles, Reλ0 = 240, Reθ =840 (LDV, with humidifier tubes in place); stars,
Reλ0 = 0, Reθ = 1430 (DeGraaff & Eaton 2000).

particularly in the outer part of the boundary layer although the results with and
without the tubes in place are qualitatively similar (figure 7). The effect of the small
particles from the humidifiers on the velocity field was negligible. This was checked
by measuring with HWA (humidifiers turned off) and then with LDV (humidifiers
turned on). As discussed in § 2 the larger Stokes number particles from the sprays did
have an effect on the velocity field due to the excess momentum introduced at the
nozzles by the air–water jet combination. We estimate that this increased the Stokes
number by approximately 5 %.

In summary, the low free-stream turbulence boundary layer flow does not depart
significantly from that of the zero free-stream turbulence boundary layer below
y+ ≈ 300 from the plate (although there are some departures because of the presence
of the tubes feeding in the particles) while for the high Reynolds number free-stream
flow, the free-stream turbulence affects the flow down to y+ ≈ 20. We will show that
the dominant mechanism affecting the inertial particles is the presence of the mean
shear. We will shown in a future publication that the mean shear and dissipation are
the dominant terms in the energy budget near the wall in the present flows, as they
are for zero free-stream turbulence boundary layers.
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4. The particle acceleration statistics
We varied the Stokes number for two different flow conditions. For the high free-

stream turbulence produced by the active grid (Reλ0 = 240), we used two different
particle injection methods: first, the sprays placed close to the grid (figure 1) produced
a high free-stream Stokes number (St0 = 0.47); and, second, the tubes introduced low
Stokes number particles (St0 = 0.07) directly into the boundary layer (figure 3). The
third flow condition is for the low free-stream turbulence case produced by the passive
grid (Reλ0 = 100). Here we introduced the low Stokes number particles (St0 = 0.035)
by the second injection method. Thus we can compare two different Stokes numbers
at the same Reynolds number, and two different Reynolds numbers at approximately
the same Stokes number. Note that although the humidifier system was at the same
setting for both Reλ0 = 240 and Reλ0 = 100, because the dissipation rate was higher for
the former case (figure 9b below), St0 was also greater (0.07 for Reλ0 = 240 compared
with 0.035 for Reλ0 = 100). We will sometimes refer to these as the ‘low Stokes’ number
case, since although they are different by a factor two, they are an order of magnitude
lower than the high Stokes number (St0 = 0.47) case.

We begin by showing the particle size distributions for the two different particle
injection methods, determined by a phase Doppler particle analyser located at the
same position as the acceleration measurements (figure 8). The particles are poly-
dispersed with a significantly broader distribution for the larger particles. We were
careful to have enough illumination to capture the full distribution, particularly for the
small particles. The profiles of the variation of the particle size and Stokes number as
a function of y+ for the three different conditions are shown in figure 9. The variation
in size is weak (figure 9a), with a slight increase in size as the wall is approached which
may be due to gravity-induced gradient effects. Because the turbulence dissipation
rate increases as the wall is approached (figure 9b, inset) and St ∼ d2ε1/2, the Stokes
number increases with decreasing y+ (figure 9b). Thus the particles not only encounter
increasing shear as the wall is approached, but their inertial effects increase as well.
Further, the effects of gravity are also significant. In figure 10 we show the ratio ug/uη.
It is of order one for the St0 = 0.47 case but decreases as the wall is approached due
to the increase in the turbulence dissipation rate (ug/uη ∼ d2ε−1/4). For the low Stokes
number cases the slight growth in the particle diameter (figure 9a) offsets the growth
in the dissipation rate (figure 9b), causing little variation in ug/uη.
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The p.d.f.s of the particles as a function of y+ are shown in figure 11 for the three
cases. Before discussing their variation within the boundary layer, we will compare
their value at the outer edge, y+ = 244, where the p.d.f.s are approaching their free-
stream values (although there is still some residual skewness, figure 15) with existing
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DNS and experimental results for isotropic turbulence. In figure 11(a) we compare
our p.d.f.s with the isotropic DNS computations of Bec et al. (2006). We have plotted
their case of St =0.48, Reλ = 185. This is closest in Stokes and Reynolds numbers to
our St0 = 0.47, Reλ0 = 240 case. The DNS p.d.f.s are slightly wider than ours, but both
are significantly narrower than for the St = 0 case (Bec et al. 2006; Ayyalasomayajula
et al. 2008; Voth et al. 2002). Note that the DNS are for mono-dispersed particles
and our particles are poly-dispersed and this, as well as the idealization used for
particle behaviour in the DNS (the Bec et al. 2006 DNS only applies to the fluid
phase; see Elgobashi & Truesdell 1992 for a discussion of the relative importance
of the other terms in the equation of motion), may account for the difference. For
the lower Stokes number (figure 11b), we have plotted the free-stream experimental
results of Ayyalasomayajula et al. (2006) from the same wind tunnel; St0 = 0.09,
Reλ0 = 250 in decaying (isotropic) turbulence. We note that the Ayyalasomayajula
et al. (2006) experiment was carried out using a light sheet with 30◦ forward scatter.
In the present work we are using nearly zero degrees forward scatter (figure 3). There
is good agreement between the two methods. Thus we are satisfied that we have a
baseline for which shear effects are minimal to compare with results where the shear
becomes more pronounced as the wall is approached. For the lowest Stokes number
case, St0 = 0.035, Reλ0 = 100 (figure 11c), the p.d.f.s are slightly narrower than for the
other low Stokes number case (figure 11b). Here the lower Reynolds number may
be playing a role (figure 12 below). We note that for the St =0.07 case, the p.d.f. is
narrower than for fluid particles at the same Reynolds number (Ayyalasomayajula
et al. 2008, figure 1), and the variance is reduced by approximately 15 %, suggesting
that inertial effects are still significant even at this low Stokes number.

With decreasing y+, the x component of the acceleration p.d.f. becomes skewed,
narrower, and its peak moves to the left, indicating a mean negative acceleration
(figure 11). The narrowing of the p.d.f. appears to be a Stokes number effect. It
is more pronounced for the St0 = 0.47 case than for the two lower Stokes number
cases. Whether the narrowing due to inertia is the sole cause is not clear; the shear
may also play a role. The skewness of the p.d.f.s clearly indicates the preponderance
of decelerating effects over positive acceleration. We will quantify this below. The
acceleration p.d.f. of the y component also narrowed and became skewed, but there
was little shift in the peak. We do not present the y component p.d.f.s here but show
their skewness below.
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Figure 11. Normalized p.d.f.s of x component total acceleration (including the mean).
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Before describing the mean and r.m.s. acceleration profiles, we compare Stokes and
Reynolds number effects. In figure 12 we show the acceleration p.d.f.s for our high
and low Stokes number cases at the same Reynolds number, and for our high and low
free-stream Reynolds number cases at approximately the same Stokes number. These
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Figure 12. Normalized acceleration p.d.f.s of x components at y+ =244: (a) different Stokes
numbers at the same Reynolds number, (b) different Reynolds numbers at the same Stokes
number (see the Stokes number match at y+ = 244, figure 9b). �, St0 = 0.47,Reλ0 = 240; �,
St0 = 0.07,Reλ0 = 240; �, St0 = 0.035,Reλ0 = 100.

are taken from figure 11 at y+ = 244. At this height in the boundary layer the p.d.f.s
are approximately symmetric because shear effects are small. There are clear Stokes
and Reynolds number effects with the tails becoming narrower as either the Stokes
number increases (figure 12a) or as the Reynolds number decreases (figure 12b).
These results are consistent with previous observations and DNS (Ayyalasomayajula
et al. 2006; Bec et al. 2006) in isotropic turbulence. The narrowing of the p.d.f. with
Reynolds number is due to the lower turbulence intensity, and hence the decrease in
rare, high-acceleration events (Bec et al. 2006; Voth et al. 2002). As discussed in § 1,
the narrowing of the tails with increasing Stokes number is thought to be due to the
inertial particles selectively sampling the fluid field: they are less likely to experience
regions of the fluid undergoing the large accelerations that occur in regions of high
vorticity.

The mean profiles of the x and y accelerations are shown in figures 13. The shift of
the peaks of the p.d.f.s (figure 11) corresponds well with the mean accelerations shown
in figure 13, although not exactly: in figure 13 we plot mean values of acceleration
while the peaks in figure 11 are the most probable values. In the free stream the
mean accelerations must be zero, and this is shown to be the case. As the wall is
approached, the mean accelerations in the streamwise component become negative.
The effect is most pronounced in the high Stokes number case. Clearly inertial effects
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.

are playing a first-order role. Notice that the two low Stokes number cases have
similar trends and magnitudes for the mean acceleration (figure 13), despite the
different free-stream Reynolds numbers. We attribute the decrease in the magnitude
of the mean acceleration (compared with the St = 0.47 case) to the decrease in inertial
and gravitational effects. Intuition might have suggested that the magnitude of mean
acceleration would decrease as inertia became more important. We will discuss this
further in § 5 in terms of the effects of the mean shear. By comparison, the y mean
component of acceleration is close to zero (figure 13b), with a small negative value
close to the plate. The insets in figure 13 show the mean acceleration normalized by
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(ε3/ν)1/4. Because of resolution difficulties in ε, the results extend only to y+ = 30.
The relative order of the three curves remains the same, except possibly for the y

component where the differences are very small.
Figure 14 shows the r.m.s. acceleration as a function of y+. As for the mean

acceleration, the x-component, high Reynolds number (Reλ0 = 240), high Stokes
number case (St0 = 0.47) has the highest magnitude close to the wall. For the two
low Stokes number cases the acceleration r.m.s. is lower, but the Reλ0 = 240 case has
a higher r.m.s. acceleration than that of the lower (Reλ0 = 100) case. Apparently the
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higher level of turbulence near the wall is increasing the particle acceleration variance
for the former case. The y component of the r.m.s. acceleration peaks at y+ ≈ 30
for all cases, and is significantly lower in magnitude than the x component. Notice
that for this component the low stokes number, high Reynolds number case has the
largest magnitude. As the free stream is approached the curve for the Reλ0 = 240 must
cross over that of the lower St case (for the same Reynolds number) since in isotropic
turbulence the acceleration variance decreases with Stokes number (for the same
Reynolds number). Thus the St0 = 0.47, Reλ0 = 240 case should have a lower r.m.s.
value than that of St0 = 0.07 at the same Reynolds number in the free stream. Our
measurements show that at y+ ≈ 4000 the acceleration r.m.s. measured for St0 = 0.47
and St0 = 0.07 are approximately the same for Reλ0 = 240 (figure 14a). The error in
determining the acceleration r.m.s. in the free stream, where its value is small, is large
for the high St case (see § 2) and the error bars do not rule out the possibility of the
cross-over, as indicated by the dashed line within the error bar limits. Note that in
these graphs (and the skewness graphs to be discussed), we have included estimates
using different strip widths (§ 2) and the results are in good agreement, confirming
that they are not sensitive to the width over which the acceleration is determined.

In figure 15 we plot the skewness of the acceleration p.d.f.s (figure 11) as a
function of y+ for the two high Reynolds number cases, Reλ0 = 240, St0 = 0.47 and
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Figure 16. Conditional acceleration histograms of the x component at Reλ0 = 240. �, v com-
ponent of velocity is downward to plate; �, v component of velocity is upward from plate.

St0 = 0.07. For the high St case the skewness is always negative, with that of the x

component having a larger magnitude than that of the y component. For the low
Stokes number case, the skewness becomes positive as y+ increases (and then relaxes
back to zero as the free stream is approached). For these cases, where inertial effects
are less significant, the large positive acceleration events are more dominant than
the decelerations at intermediate y+. By changing the nozzle settings we took some
extra measurements at an intermediate case, Reλ0 = 240, St0 = 0.28. Here the skewness
behaviour was negative and rose to zero, qualitatively similar to the St0 = 0.07 case
but without an overshoot. This intermediate case, shown in the inset to figure 15(a),
shows the continuous trend in skewness with Stokes number. Kurtosis values for the
x component of acceleration showed large scatter. For Reλ0 = 240, St0 = 0.47 they
were in the range 6 to 8 and for the Reλ0 = 240 St0 = 0.07 case they varied from 11
to 16 in the boundary layer.

The conditional histograms provide further insight into the behaviour of the
acceleration. Figure 16 shows the histogram of the x component of acceleration
conditioned on the sign of v, the vertical velocity, for two Stokes numbers and at
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three different distances from the plate. Close to the plate (y+ = 7.5) the conditional
histogram is dominated by the downward acceleration events, and this is more so
for the high Stokes flow (compare figure 16a with figure 16b). Far from the plate
(y+ = 244) the downward events are still more dominant for the high Stokes number
case (figure 16e), but for the low Stokes number case (figure 16f ) upward and
downward events are approximately equally probable.

5. Discussion
Our results show pronounced effects of the boundary layer structure on the

Lagrangian acceleration statistics of inertial particles. We will discuss our observations
in terms of the effects of the mean shear. First, we begin with a closer examination
of the acceleration p.d.f.s.

As the wall is approached, the acceleration p.d.f.s become narrower and skewed
(figure 11). This narrowing is most pronounced for the highest Stokes number.
The Stokes number increases as y+ decreases, and thus the decrease in the tails
could be expected. The turbulence Reynolds number also decreases as the wall
is approached and this will also affect the width of the tails. In this respect the
particles in the boundary layer are behaving in a qualitatively similar way to their
behaviour in isotropic turbulence, despite the boundary layer’s more complex flow
structure. However, in isotropic turbulence the acceleration variance decreases as
the Stokes number increases due to the increase in the particle stopping time, τs

(Ayyalasomayajula et al. 2006; Bec et al. 2006). In our boundary layer measurements,
we find that both the mean acceleration and its variance become more pronounced
with increasing Stokes number (figures 13 and 14), a result that is in marked contrast
to the isotropic case. (In isotropic turbulence the mean acceleration must be zero,
and this is observed in the outer part of our boundary layer, figure 13. Moreover,
fluid particles (St = 0) should experience relatively weak mean acceleration in a zero-
pressure-gradient flat-plate boundary layer.) Thus the observations of figures 13 and 14
must be explained in terms of the effects of boundary layer structure on the inertial
particles. While there have been a number of studies of particle transfer mechanisms
in the turbulent boundary layer (e.g. Kaftori et al. 1995a, b; Pan & Banerjee 1996;
Young & Leeming 1997; Rouson & Eaton 2001; Marchioli & Soldati 2002) these
papers focus on the effects of preferential particle concentration (in regions of the
low-speed streaks) and on the effects of the sweeps and ejections on the particle
transfer mechanisms. We have not been able to find any work that addresses directly
the acceleration mechanisms for inertial particles.

While recognizing the importance of flow structure, we believe that by examining
the effects of the mean shear and gravity we can shed light on the nature of the
accelerations of the inertial particles. In the limiting case of a small rigid particle in
a turbulent fluid, the equation of motion is (Maxey & Riley 1983)

dX
dt

= V (t),
dV
dt

= − V (t) − u(X(t), t)

τs

+ g. (5.1)

Here X(t) is the particle position, V (t) is the particle velocity, u(X(t), t) is the fluid
velocity and g is acceleration due to gravity. We have neglected the Saffman lift
force since we found it to be negligible compared to the other two terms for our
flow. We have also neglected the ratio (ρd − ρf )/ρd which is close to unity. For a
fuller discussion of the relative importance of the terms in the equation of motion see
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Elghobashi & Truesdell (1992). The solution for V (t) is (Bec et al. 2006)

V (t) = V (0)e−t/τs +

∫ t

0

e−(t−t ′)/τs

(
u
τs

+ g

)
dt ′. (5.2)

Taking the average of the y component of (5.2) and recognizing that 〈uy〉 ≈ 0, we find
for the mean vertical velocity of the inertial particles:

〈Vy(t)〉 = 〈Vy(0)〉e−t/τs + gτs (1 − e−t/τs ). (5.3)

Integrating (5.3) with respect to time, we can write an expression for the average
particle penetration distance, 〈yp〉:

〈yp(tp)〉 = y0 − τs〈Vy(0)〉
(
e−tp/τs − 1

)
+ gτs

(
tp + τs(e

−tp/τs − 1)
)

(5.4)

where tp is the travel time between y0 and yp . We consider an arbitrary vertical
position in the boundary layer, y0, and from the tracks we take the mean vertical
velocity at this position, 〈Vy(0)〉. Substituting these values and the value of τs at the
same position (τs has slight dependence on y+ since the particle size distribution
depends on y+ (see figure 9a)) into (5.4), and using the value of τη0 (the appropriate
time scale for acceleration events) for tp we can determine the particle penetration
distance for each of the various conditions. Using these values and the shear the
particle experiences over the penetration distance, we can write a relation for the
mean particle acceleration:

〈a〉x ≈ 〈Vx(yp)〉 − 〈Vx(y0)〉
τη0

(5.5)

where 〈Vx(yp)〉 and 〈Vx(y0)〉 are the x velocity components of a particle taken from
the mean velocity profile obtained from LDV measurements. This procedure has been
carried out for a number of values of y+. The results of our estimates are shown in
figure 13 for the high and low Stokes number cases. The fit to the data is good. The
above model suggests that the deceleration is due to the dissipative drag term which
acts when the particles have a relative velocity compared with that of the fluid. The
effect is enhanced when the shear is aligned with gravity. We note that this analysis
holds for inertial particles only, and does not hold for St → 0.

We now turn to the r.m.s. accelerations, figure 14. While we are unable to model
their behaviour, it is instructive to check their magnitudes for consistency with other
observations. In figure 17 we plot the x component of the acceleration variance
normalized by (ε3/ν)1/2. Because of the large error bars, it is difficult to discern a
clear trend although the low Reynolds number case falls below that of those at the
high Reynolds numbers. We might expect that the high Stokes number case would
have lower normalized acceleration value. This is the case in isotropic turbulence (Bec
et al. 2006), but in the boundary layer the acceleration increases with St and this,
although partially offset by the increased dissipation for the high Reynolds number
case (figure 9b), apparently accounts for the slightly higher values of the normalized
acceleration at the higher Stokes number. Note that the normalized accelerations
only extend down to y+ = 30 because of the uncertainty in the determination of the
dissipation for smaller y+. Thus there is little difference between the two different
Stokes number cases for Reλ0 = 240 since their acceleration variances only become
significantly different below y+ = 30 (figure 14). In isotropic turbulence the normalized
acceleration variance, known as a0 (Voth et al. 2002; Gylfason et al. 2004) is found to
be in the range of 3 to 7 for fluid particles in the Reynolds number range of interest
here. There is much scatter in the reported data, with the experiment showing higher
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St0 = 0.035, Reλ0 = 100. The thin error bars are for St0 = 0.47, Reλ0 = 240. To avoid clutter,
no error bars are shown for St0 = 0.07, Reλ0 = 240. They are the same as for St0 = 0.035,
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Figure 18. Froude number. �, St0 = 0.47, Reλ0 = 240; �, St0 = 0.07, Reλ0 = 240;
�, St0 = 0.035, Reλ0 = 100.

values than DNS (Gylfason et al. 2004). Thus our measurements, with values around
4 and decreasing with decreasing y+, are in the same range as the isotropic results but
further work will be needed to separate Reynolds, Stokes and gravitational effects as
well as the effects of anisotropy caused by the shear. In figure 18 we plot the Froude
number Fr = gSt/arms . Since this depends on the estimation of acceleration, the error
bars are large for the high Stokes number case. The trend and magnitude follow that
of ug/uη (figure 10). Note that the ratio Fr/(ug/uη) is a0

−1/2.
Finally, we remark on the forms of the acceleration r.m.s. profiles. As mentioned we

do not have other experimental or DNS results with which to compare our inertial
particle acceleration results. However, the DNS acceleration profiles for turbulent
channel flow by Choi, Yeo & Lee (2004a, b) show similar form to our r.m.s. profiles
of figure 14. Thus they show that the x component increases until very close to the
wall, and the y component has its maximum at y+ of approximately 30 and is smaller
in magnitude than the x component. This is consistent with our own observations
(figure 14), although, as we have emphasized, inertia plays a dominant role in our flow
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and the physics as St → 0 may be different. However the boundary structure must
affect the acceleration fluctuations. Thus we would expect the sweeps and ejection
mechanisms and the other concomitant motions to be reflected in the inertial particle
flutuations.

6. Conclusions
Using high-speed particle tracking techniques, we have shown the pronounced

effects of shear on the Lagrangian acceleration statistics of inertial particles in a
turbulent boundary layer. Results from three different cases have been presented in
order to form a consistent set: low and high Stokes numbers with the same free-stream
Reynolds number, and approximately the same Stokes number at different free-stream
Reynolds numbers. Our findings suggest that the acceleration statistics are primarily
determined by the particle inertia and the boundary layer structure, specifically shear.
We determined that changes of the free-stream turbulence conditions and particle
injection methods were not critical for the qualitative behaviour of the acceleration
statistics.

Our main finding is that the magnitude of the acceleration mean and its r.m.s.
increase as the boundary layer wall is approached (figures 13 and 14). Here shear and
Stokes number effects become large and these act to strongly decelerate the particles.
The acceleration p.d.f.s become narrower and skewed, reflecting the increasing Stokes
numbers and shear as the wall is approached (figure 11). We note that in isotropic
turbulence, as the Stokes numbers increases, the r.m.s. acceleration decreases (Bec
et al. 2006; Ayyalasomayajula et al. 2006), in marked contrast to the present findings.
We have further quantified the p.d.f. statistics by determining the acceleration p.d.f.
conditioned on the vertical velocity, showing that vertically downward accelerations
dominate upward ones, and that this is more pronounced for higher Stokes number
(figure 16). We have compared our results from the outer part of the boundary layer
(where shear effects are weak) to our earlier measurements (Ayyalasomayajula et al.
2006) using a different optical setup, and the measurements agree well (figure 11b).
We have also provided estimates of the normalized acceleration variance (figure 17)
and have compared them with values observed in isotropic turbulence. We have used
the equations of motion for a Lagrangian particle to model the mean acceleration.
From these we have shown the importance of the effects of shear coupled with inertia
and gravity.

We believe our results will be of significance to the modelling of natural as
well as industrial processes where shear is often present and particles are integral
to the process. These include dust and salt particles in the atmospheric boundary
layer, droplets in clouds, phytoplankton behaviour in the oceans and reactions and
transport in gas turbine combustors, but there are many other examples. The subject is
complex since there are a number of parameters. Shear strength, particle distribution,
Stokes number, Reynolds number and Froude number all undoubtedly play a role in
determining the behaviour of the small inertial particles described here and systematic
experimental and computational work will be required in order to determine their
relative effects. We should expect further complications for particles larger than the
Komogorov scale since there is already evidence that the acceleration p.d.f.s for this
case behave differently to those of small particles in flows without shear (Xu &
Bodenschatz 2008; Qureshi et al. 2007). The subject is rich and there is much to be
done.
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Our results appear to be the first Lagrangian acceleration measurements of inertial
particles in a turbulent shear flow. The flow we have addressed here is complex and
it will be of importance to see if the observations reported here are qualitatively
reproduced in channel flow or in homogeneous shear flow.
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We thank Todd Cowen for the use of the tunnel. This work was supported by the US
National Science Foundation.

REFERENCES

Aliseda, A., Cartellier, A., Hainaux, F. & Lasheras J. C. 2002 Effect of preferential concentration
on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech.
468, 77–105.

Ayyalasomayajula, S. Collins, L. R. & Warhaft, Z. 2008 Modelling inertial particle Lagrangian
acceleration statistics in turbulent flows. Phys. Fluids 20, 095104.

Ayyalasomayajula, S., Gylfason, A., Collins, L. R., Bodenschatz, E. & Warhaft, Z. 2006
Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel
turbulence. Phys. Rev. Lett. 97, 144507.

Bec, J., Biferale, L. Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S. & Toschi,

F. 2006 Acceleration statistics of heavy particles in turbulence. J. Fluid Mech. 550, 349–358.

Bourgoin, M., Ouellette, N. T., Xu, H. T., Berg, J. & Bodenschatz, E. 2006 The role of pair
dispersion in turbulent flow. Science. 311, 835–838.

Brooke, J. W., Kontomaris, K., Hanratty, T. J. & McLaughlin, J. B. 1992 Turbulent deposition
and trapping of aerosols at a wall. Phys. Fluids A. 4, 825–834.

Chen L., Goto S. & Vassilicos, J. C. 2006 Turbulent clustering of stagnation points and inertial
particles. J. Fluid Mech. 553, 143–154.

Choi, J., Yeo, K. & Lee, C. 2004a Intermittent nature of acceleration in near wall turbulence. Phys.
Rev. Lett. 92, 144502.

Choi, J., Yeo, K. & Lee, C. 2004b Lagrangian statistics in turbulent channel flow. Phys. Fluids 16,
779–793.

Christensen, K. T. & Adrian, R. J. 2002 Measurement of instantaneous Eulerian acceleration
fields by particle-image velocimetry: method and accuracy. Exps. Fluids 33, 759–769.

Chun, J. H., Koch D. L., Rani S. L., Ahluwalia A. & Collins L. R. 2005 Clustering of aerosol
particles in isotropic turbulence. J. Fluid Mech. 536, 219–251.

DeGraaff, D. B. & Eaton, J. K. 2000 Reynolds-number scaling of the flat-plate turbulent boundary
layer. J. Fluid Mech. 422, 319–346.

Dong, P., Hsu, T. Y., Atsavapranee, P. & Wei, T. 2001 Digital particle image accelerometry. Exps.
Fluids 30, 626–632.

Elghobashi, S. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying
isotropic turbulence. J. Fluid Mech. 242, 655–700.

Elperin, T., Kleeorin, N., L’vov, V. S., Rogachevskii, I. & Sokoloff, D. 2002 Clustering instability
of the spatial distribution of inertial particles in turbulent flows. Phys. Rev. E 66, 036302.

Friedlander, S. K. & Johnstone, H. F. 1957 Deposition of suspended particles from turbulent gas
streams. Indust. Engng Chem. 49, 1151–1156.

Fuchs, W., Nobach, H. & Tropea C. 1994 Laser Doppler anemometry data simulation: application
to investigate the accuracy of statistical estimators. AIAA J. 32, 1883–1889.

Ghosh, S., Davila, J., Hunt, J. C. R., Srdic, A., Fernando, H. J. S. & Jonas, P. R. 2005 How
turbulence enhances coalescence of settling particles with applications to rain in clouds. Proc.
R. Soc. Lond. A. 461, 3059–3088.

Goto, S. & Vassilicos, J. C. 2008 Sweep-stick mechanism of heavy particle clustering in fluid
turbulence. Phys. Rev. Lett. 100, 054503.



280 S. Gerashchenko, N. S. Sharp, S. Neuscamman and Z. Warhaft

Gulitski, G., Kholmyansky, M., Kinzelbach, W., Luthi, B., Tsinober, A. & Yorish, S. 2007
Velocity and temperature derivatives in high Reynolds number turbulent flows in the
atmospheric surface layer. Part 2. Acceleration and related matters. J. Fluid Mech. 589,
83–102.

Gylfason, A. 2006 Particles, passive scalars, and the small scale structure of turbulence. PhD Thesis.
Mechanical and Aerospace Engineering, Cornell University.

Gylfason, A., Ayyalasomayajula, S. & Warhaft, Z. 2004 Intermittency, pressure and acceleration
statistics from hot-wire measurements in wind-tunnel turbulence. J. Fluid Mech. 501, 213–229.

Hancock, P. E. & Bradshaw, P. 1989 Turbulence structure of a boundary layer beneath a turbulent
free stream. J. Fluid Mech. 205, 45–76.

Hill, R. J. & Wilczak, J. M. 1995 Pressure structure functions and spectra for locally isotropic
turbulence. J. Fluid Mech. 296, 247–269.

Jakobsen, M. L., Dewhirst, T. P. & Greated, C. A. 1997 Particle image velocimetry for predictions
of acceleration fields and force within fluid flows. Meas. Sci. Technol. 8, 1502–1516.

Jensen, A., Sveen, J. K., Grue, J., Richon, J. B. & Gray, C. 2001 Accelerations in water waves by
extended particle image velocimetry. Exps. Fluids 30, 500–510.

Kaftori, D., Hetsroni, G. & Banerjee, S. 1995a Particle behavior in the turbulent boundary layer.
Part I: Motion, deposition, and entrainment. Phys. Fluids 7, 1095–1106.

Kaftori, D., Hetsroni, G. & Banerjee, S. 1995b Particle behavior in the turbulent boundary layer.
Part II: Velocity and distribution profiles. Phys. Fluids 7, 1007–1121.

Kinzel, M., Nobach, H., Tropea, C. & Bodenschatz, E. 2006 Measurement of Lagrangian
acceleration using the laser Doppler technique. Proc. 13th Intl Symp. on Applications of Laser
Techniques to Fluid Mechanics, June 26–29, Lisbon, Portugal.

Kulick, J. D, Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in
fully developed channel flow. J. Fluid Mech. 277, 109–134.

Lehmann, B., Nobach, H. & Tropea, C. 2002 Measurement of acceleration using the laser Doppler
technique. Meas. Sci. Technol. 13, 1367–1381.

Lehmann, K., Siebert, H., Wendisch, M. & Shaw, R. 2007 Evidence for inertial droplet clustering
in weakly turbulent clouds. Tellus B 59, (1), 57–65.

Liu, X. & Katz, J. 2006 Instantaneous pressure and material acceleration measurements using a
four-exposure PIV system. Exps. Fluids 41, 227–240.

Lowe, T. K. & Simpson, R. L. 2006 Measurements of velocity-acceleration statistics in turbulent
boundary layers. Intl J. Heat Fluid Flow 27, 558–565.

Makita, H. 1991 Realization of a large-scale turbulence field in a small wind-tunnel. Fluid Dyn.
Res. 8, 53–64.

Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent
boundary layer. J. Fluid. Mech. 468, 283–315.

Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and
random flow fields. J. Fluid Mech. 174, 441–465.

Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform
flow. Phys. Fluids 26, 883–889.

Mordant, N., Crawford, A. & Bodenschatz, E. 2004 Experimental lagrangian acceleration
probability density function measurements. Physica D 193, 245–251.

Mordant, N., Metz, P., Michel, O. & Pinton, J. F. 2001. Measurement of Lagrangian velocity in
fully developed turbulence. Phys. Rev. Lett. 87, 214501.

Mydlarski, L. & Warhaft Z. 1996 On the onset of high-Reynolds-number grid-generated wind
tunnel turbulence. J. Fluid Mech. 320, 331–368.

Ouellette, N. T., Xu, H. & Bodenschatz, E. 2006a A quantitative study of three-dimensional
Lagrangian particle tracking algorithms. Exps Fluids 40, 301–313.

Ouellette, N. T., Xu, H., Bourgoin, M. & Bodenschatz, E. 2006b Small-scale anisotropy in
Lagrangian turbulence. New J. Phys. 8, 102–111.

Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence.
Phys. Fluids 8, 2733–2755.

Post, S. L. & Abraham, J. 2002 Modeling the outcome of drop-drop collisions in Diesel sprays.
Intl J. Multiphase Flow 28, 997–1019.

Qureshi, N. M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport
of material particles: An experimental study of finite size effects. Phys. Rev. Lett. 99, 184502.



Lagrangian measurements of inertial particle accelerations 281

Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in
turbulent channel flow. J. Fluid Mech. 428, 149–169.

Salazar, J. P. L. C., de Jong J., Cao, L., Woodward, S., Meng, H. & Collins, L. R. 2008
Experimental and numerical investigation of inertial particle clustering in isotropic turbulence.
J. Fluid Mech. 600, 245–256.

Saw, E. W., Shaw, R., Ayyalasomayajula, S., Chuang, P. Y. & Gylfason, A. 2008 Inertial
Clustering of Particles in High-Reynolds-Number Turbulence. Phys. Rev. Lett. 100, 214501.

Seuront, L. & Schmitt, F. G. 2004 Eulerian and Lagrangian properties of biophysical intermittency
in the ocean. Geophys. Res. Lett. 31, L03306.

Shaw, R. A. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35,
183–227.

Shen, X. & Warhaft, Z. 2000 The anisotropy of the small scale structure in high Reynolds number
(R-lambda similar to 1000) turbulent shear flow. Phys. Fluids. 12, 2976–2989.

Squires, K. D. & Eaton, J. K. 1991 Preferential concentration of particles by turbulence. Phys.
Fluids A 3, 1169–1178.

Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent
suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75–109.

Thole, K. A. & Bogard, D. G. 1996 High free stream turbulence effects on turbulent boundary
layers. J. Fluids Engng 118, 276–284.

Toschi, F. & E Bodenschatz, E. 2009 Lagrangian properties of turbulence. Annu. Rev. Fluid Mech.
(in press).

Tsuji, Y., Fransson, J. H. M., Alfredsson, P. H. & Johansson, A. V. 2007 Pressure statistics and
their scaling in high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 585, 1–40.

Volk, R., Mordant, N., Verhille, G. & Pinton, J. F. 2008 Laser Doppler measurement of inertial
particle and bubble accelerations in turbulence. Europhys. Lett. 81, 34002.

Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2002 Measurement
of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121–160.

Wood, A. M., Hwang, W. & Eaton, J. K. 2005 Preferential concentration of particles in
homogeneous and isotropic turbulence. Intl J. Multiphase Flow 31, 1220–1230.

Xu, H. & Bodenschatz E. 2008 Motion of inertial particles with size larger than the Komogorov
scale in turbulent flows. Physica D. doi:10.1016/j.physd.2008.04.022

Xu, H., Bourgoin, M., Ouellette, N. T. & Bodenschatz E. 2006 High order Lagrangian velocity
statistics in turbulence. Phys. Rev. Lett. 96, 024503.

Xu, H., Ouellette, N. T. & Bodenschatz E. 2008 Evolution of geometric structures in intense
turbulence. New J. Phys. 10, 013012.

Young, J. & Leeming, A. 1997 A theory of particle deposition in a turbulent pipe flow. J. Fluid
Mech. 340, 129–159.


